#### FreedomCAR & Vehicle Technologies Program

# Electrical Energy Storage

# "Plug-In Hybrid Electric Vehicle Battery Research and Development Activities"

Presented to U.S. Department of Energy: PHEV Stakeholder Workshop

David Howell
Office of FreedomCAR & Vehicle Technologies
June 13, 2007

- Program Overview
  - Battery Operation and Research Goals
  - R&D Resources and Program Structure
- Battery Technology
  - Why Lithium-ion Batteries?
  - Remaining Challenges
  - Technology Development Roadmap
- □ PHEV R&D Activities
  - Battery Requirements
  - USABC Battery Solicitation
  - Research Directions

- Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric vehicles
- □ Target Applications
  - Power-Assist Hybrid Electric Vehicles (HEVs)
  - Plug-in Hybrid Electric Vehicles (PHEVs)
  - Battery Electric Vehicles (EVs)

# **Battery Operation**







- 2010 FreedomCAR HEV Goal: To enable reliable HEVs that are durable and affordable, the goal is:
  - Electric drivetrain energy storage with 15-year life at 300 Wh, with discharge power of 25 kW for 18 seconds, and \$20/kW
- 2014 PHEV Battery Goal:
  - PHEV energy and power goals (PHEV-10 and PHEV 40)
    have been developed in collaboration with the Vehicles
    Systems & Analysis Tech Team
  - PHEV cost goal: \$200-300/kWh

### **Battery R&D Resources**









# **Program Structure**







Develop full battery systems through competitive subcontracts with the USABC. (Industry)

Investigations on cell
behavior to understand and
overcome performance
barriers of Li-ion battery
technology. (DOE National
Laboratories)



Novel materials development (cathode, anode, electrolyte) that promise increased power and energy. (DOE National Labs and Universities)

# Why Lithium-ion?

- Lithium-ion has higher volumetric and gravimetric energy densities than competing battery technologies, enabling smaller and lighter battery packs.
- Lithium-ion also promises reduced cost, increased performance, and longer life.



Gravimetric Energy Density (Wh/kg)

Lithium-ion is viewed as the most viable PHEV battery chemistry

### **Power Assist Hybrids**

- □ Cost: Current estimated cost of lithium-ion batteries for HEVs is about 1.5 to 2 times the FreedomCAR target.
- □ Abuse Tolerance: Existing lithium-ion batteries are intolerant to overcharge, crush, and high temperature exposure.
- □ Calendar Life: Accelerated life testing on multiple lithium-ion electro-chemistries has demonstrated an 8-15 year calendar life, but getting accurate life prediction is very challenging.
- Low Temperature Performance: Reduction in discharge power is an issue and lithium plating during regenerative braking may reduce life.

## PHEV Overview: Challenges

#### Plug-In Hybrids

- □ Lithium-ion batteries for PHEVs and EVs are further from commercialization
  - Improvement in energy density is needed to permit evolution from HEVs to PHEVs.
- Critical Barriers include:
  - Cost of PHEV batteries estimated to be \$1,000 + per kWh
  - Same abuse tolerance issues as HEV batteries, yet with more available energy
  - Volume and weight are issues.
  - Life issues are unknown. Unclear how deep discharges will affect life.
  - Discharge power may be a greater issue at very low temperatures

4. Li titanate/Mn spinel

#### Technology Development Roadmap

#### Cost Goals Research Goals Specific Energy: 100 Wh/kg (by 2010) \$20/kW (by 2010) HEV: 150 Wh/kg (by 2015) \$250/kWh (by 2015) PHEV: Phase 3: Battery Phase 4: Cost Phase 1: Materials Phase 2: Cell Commercialization Development Development Development Reduction Long-term, exploratory (5) 6 7 4 Intermediate term 89 Near market-ready 10 Commercialized 1. Li Metal/Li Ion Polymer 5. Graphite/Mn spinel 8. Ultracapacitors 2. Li/Sulfur system 6. Graphite/Iron phosphate 9. Low cost separators 3. Li alloy/high V TMO system 7. Graphite/Nickelate 10. NiMH

#### **PHEV R&D Activities**

#### **Battery Requirements & Test Protocols**

- Developed PHEV Battery Performance Requirements
  - PHEV modeling and simulation performed at ANL & NREL
  - Integrated state-of-the-art battery data into model
  - Developed PHEV battery requirements for a variety of vehicle platforms and "All Electric Ranges" (10 to 60 miles).
- Developed specifications for and procured State-of-the-Art PHEV lithium-ion Batteries
  - Saft 41Ah Li-ion battery packs
  - Cycle life testing is underway (ANL/SCE)
    - Assess current state-of-the-art
    - Develop testing protocols
  - Hardware-in-the-Loop testing and analysis (ANL)

# USABC Goals for Advanced Batteries for PHEVs

| Characteristics (End of Life)                     |            | High<br>Power/ Energy<br>Ratio Battery | High<br>Energy/ Power<br>Ratio Battery |
|---------------------------------------------------|------------|----------------------------------------|----------------------------------------|
| Reference Equivalent Electric Range               | miles      | 10                                     | 40                                     |
| POWER AND ENERGY                                  |            |                                        |                                        |
| Peak Pulse Discharge Power - 2 Sec / 10 Sec       | kW         | 50 / 45                                | 46 / 38                                |
| Peak Regen Pulse Power (10 sec)                   | kW         | 30                                     | 25                                     |
| Available Energy: Charge Depleting Mode @10 kW    | kWh        | 3.4                                    | 11.6                                   |
| BATTERY LIFE                                      |            |                                        |                                        |
| Charge Depleting Life / Discharge Throughput      | Cycles/MWh | 5,000 / 17                             | 5,000 / 58                             |
| Charge sustaining (HEV) Cycle Life, 50 Wh Profile | Cycles     | 300,000                                | 300,000                                |
| Calendar Life, 35°C                               | year       | 15                                     | 15                                     |
| WEIGHT, VOLUME, & COST                            |            |                                        |                                        |
| Maximum System Weight                             | kg         | 60                                     | 120                                    |
| Maximum System Volume                             | Liter      | 40                                     | 80                                     |
| Battery Cost                                      | \$         | 1,700                                  | 3,400                                  |

- DOE and USABC issued a \$28 million solicitation for PHEV battery development on April 5<sup>th</sup>
- □ The Purpose of this solicitation was to:
  - Fund battery developers to develop, design, build, and test PHEV battery hardware (cells and modules) which have the potential to meet the USABC PHEV energy storage performance requirements
- Proposal deadline was May 31st
  - 11 proposals received
  - Multiple awards expected during FY 2007

# **Exploratory and Applied Research**

- Positive Electrode Material
  - Next-generation olivine, layered, and spinel structures
  - New high capacity positive materials (>250 mAh/g)
- Negative Electrode Material
  - Novel inter-metallic alloys and new binders
  - Nanophase metal oxides
  - Li metal systems
- □ Electrolytes
  - High voltage electrolytes (4.5 5 Volts)
  - Solid polymer electrolytes
  - Non-flammable electrolyte
- Laboratories: ANL, BNL, INL, LBNL, NREL, ORNL, SNL
- Universities: Univs of Texas, Utah, Michigan, MIT, Clemson, Brigham Young, SUNY, Columbia,

#### ☐ Lithium-Ion batteries are technically feasible

- Synergies between development of HEV and PHEV batteries
- Batteries specifically built for this application are becoming available for testing
- Impact of dual mode of operation during charge depleting and charge sustaining on battery life is not understood

#### Cost is a potential show stopper

- Current cost of lithium-ion battery is about \$1000 /kWh
- The short-term cost goal is \$500/kWh and the long-term goal is \$250/kWh
- Cost must be reduced without degradation in battery performance
- □ PHEV battery requirements for a variety of vehicle architectures are being developed in collaboration with the Vehicle Systems Tech Team

# Acknowledgements

- ☐ Tien Duong (DOE)
- ☐ Jim Barnes (DOE)
- □ Jack Deppe (LBNL)
- □ Gary Henriksen (ANL)
- BJ Kumar (Energetics)
- □ Irv Weinstock (Sentech)